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Abstract

Although aminoglycoside antibiotics such as kanamycin are widely used clinically to treat life 

threatening bacterial infections, ototoxicity remains a significant dose-limiting side effect. The 

prevailing view is that the hair cells are the primary ototoxic target of aminoglycosides and that 

spiral ganglion neurons begin to degenerate weeks or months after the hair cells have died due to 

lack of neurotrophic support. To test the early developmental aspects of this issue, we compared 

kanamycin-induced hair cell and spiral ganglion pathology in rat postnatal day 3 cochlear 

organotypic cultures with adult whole cochlear explants. In both adult and postnatal day 3 

cultures, hair cell damage began at the base of the cochleae and progressed towards the apex in a 

dose dependent manner. In postnatal day 3 cultures, spiral ganglion neurons were rapidly 

destroyed by kanamycin prior to hair cell loss. In contrast, adult spiral ganglion neurons were 

resistant to kanamycin damage even at the highest concentration, consistent with in vivo models of 

delayed SGN degeneration. In postnatal day 3 cultures, kanamycin preferentially damaged type I 

spiral ganglion neurons whereas type II neurons were resistant. Spiral ganglion degeneration of 

postnatal day 3 neurons was associated with upregulation of the superoxide radical and caspase-3 

mediated cell death. These results show for the first time that kanamycin is toxic to postnatal day 3 

spiral ganglion neurons, but not adult neurons.
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Introduction

Aminoglycoside antibiotics continue to be used worldwide to treat gram negative bacterial 

infections and tuberculosis, despite the fact that they can cause severe nephrotoxicity and 

ototoxicity (Van Boeckel et al., 2014). Sensitivity to aminoglycoside ototoxicity is 

exacerbated by certain mitochondrial mutations (Fischel-Ghodsian, 1998) as well as co-

administration of aminoglycosides and loop inhibiting diuretic such as ethacrynic acid or 

furosemide (Ding et al., 2010a). As the dose and/or duration of aminoglycosides treatment 

increases, hair cell damage spreads from the high-frequency base of the cochlea towards the 

low-frequency apex (Sha et al., 2001a). Moreover, damage is greater and occurs earlier for 

outer hair cells (OHC) than inner hair cells (IHC) (Dallos and Harris, 1978, McFadden et al., 

2002). Aminoglycoside-induced hair cell degeneration is believed to be mediated by reactive 

oxygen species (ROS) (Hirose et al., 1997). This interpretation is supported by studies 

showing that aminoglycoside-induced hearing loss and hair cell loss are less severe in mice 

overexpressing the superoxide dismutase gene (Lautermann et al., 1997, Sha and Schacht, 

2000, Sha et al., 2001b).

Several weeks or months after aminoglycoside-induced hair cell loss has occurred in vivo, 

the spiral ganglion neurons (SGN) begin to die off (Kopelovich et al., 2013, McFadden et 

al., 2004, Yu et al., 2014). SGN degeneration continues over weeks and months (Xu et al., 

1993) further exacerbating the cochlear pathology. The mechanisms responsible for the 

initial survival of SGN as well as their delayed degeneration after hair cells are destroyed 

remain poorly understood. In mutant mice lacking only inner hair cells (IHCs), SGNs 

survival lasts for at least six months implying that the residual supporting cells and outer hair 

cells (OHC) may provide sufficient trophic support required for SGN survival (Ding et al., 

2016, Sugawara et al., 2005, Zilberstein et al., 2012). In contrast, degeneration of SGN after 

aminoglycoside treatment could be due to the degeneration of OHC, IHC and support cells 

and loss of trophic support from a flattened sensory epithelium (Izumikawa et al., 2008). 

Alternatively, aminoglycoside-induced SGN degeneration could result from glutamate-

induced excitotoxicity (Matsuda et al., 1999) or disruption of calcium homeostasis in the 

extracellular matrix (Esterberg et al., 2013, Jeong et al., 2010).

Streptomycin, an aminoglycoside antibiotic that can rapidly cross the blood-labyrinth barrier 

impairs synaptic transmission at neuromuscular junction and afferent synapse beneath 

vestibular hair cells (Pittinger and Adamson, 1972, Zucca et al., 1992). After systemic 

streptomycin injection, an acute neurotoxic effect rapidly occurs to the cochlear afferent and 

efferent terminals prior to the hair cell degeneration; this significantly increased the latency 

of the compound action potential and wave I and the interwave intervals of the auditory 

brains stem response 20 min after streptomycin treatment (Ding and Salvi, 2005, Ding et al., 

2010b). Some studies also suggest that kanamycin (KM) exerts neurotoxic effects on 

neurons in the dorsal cochlear nucleus (Fan et al., 2013). In cases where gentamicin was 

infused into the cochlear, a noticeable loss of SGN occurred in the first week post-treatment; 

this was followed by an even greater loss of SGN over the next 30 weeks (Dodson and 

Mohuiddin, 2000). Other in vivo studies report that kanamycin (KM) causes a retraction of 

auditory nerve terminals from hair cells prior to IHC loss (Kong et al., 2010) suggesting that 

aminoglycosides may have a direct neurotoxic effect on SGN. In contrast, others report that 
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most postnatal SGN survive in aminoglycoside-treated cochlear cultures for 5–6 days, but 

survival declines to about 50% after 10 days unless the cultures are treated with neurotrophic 

factors (Lalwani et al., 2002, Staecker et al., 1996). Thus, there is some ambiguity in the 

literature regarding the time course of SGN degeneration.

Because of the growing concern that SGN and their peripheral afferents are particularly 

vulnerable to a variety of ototraumatic agents (Kujawa and Liberman, 2006, 2015, 

Sergeyenko et al., 2013), KM was applied to cochlear organotypic cultures from postnatal 

day 3 (P3) and adult rats to investigate the mechanisms of cell death and time course of hair 

cell and neural degeneration.

Methods

Subjects

Adult Sprague-Dawley rats (~4 months old) and their P3 rat pups were obtained from 

Charles River Laboratories (Wilmington, MA, USA).

Postnatal Organotypic Cultures

Our procedures for preparing organotypic cultures from postnatal and adult animals have 

been described in prior publications (Ding et al., 2012, Ding et al., 2013b, Wei et al., 2010). 

In brief, animals were euthanized with an overdose of CO2, decapitated and the cochleae 

quickly removed. The organ of Corti from P3 rat pups, which contained the hair cells and 

SGN, were placed on a droplet (15 µl) of rat tail collagen gel in a tissue culture dish. The 

cultures were subsequently incubated overnight in serum free medium (0.01 mg/ml bovine 

serum albumin [Sigma A-4919], 1% Serum-Free Supplement [Sigma I-1884], 2.4% of 20% 

Glucose [Sigma G-2020], 0.2% Penicillin G [Sigma P-3414], 1% 200 mM glutamine [Sigma 

G-6392], 95.4% 1X basal medium Eagle [Sigma B-1522]) in a CO2 incubator (37 °C, 5% 

CO2, 95% humidity). On the second day, the cultures were treated for 24 h with 2 ml of 

fresh culture medium containing various concentrations of KM (Sigma-Aldrich, K4000). 

Some P3 cultures were treated with 1 mM KM for 3, 6, 12 or 24 h and used to detect the 

expression of the superoxide radical or caspase-3, an executioner caspase, whereas other P3 

cultures were treated for 24 or 48 h with 1 mM KM and subsequently labeled with an 

antibody against peripherin which only labels type II neurons or a neurofilament 200 kDa 

antibody that labels both type I and type II neurons.

Adult Cochlear Explants

Our procedures for preparing and culturing adult whole cochlear explants have been 

described previously (Ding et al., 2012). In adult rats, the bony cochlea was removed from 

the temporal bone after decapitation, and perforations were carefully made along the bony 

surface of cochlear spiral shell in order to permit the flow of culture medium into the tissue. 

The whole cochlear explant was immersed into serum-free culture medium which was 

maintained in an incubator at 37 °C and 5% CO2 for subsequent treatment with various 

concentrations of KA. For observations using adult SGN, the SGN was dissected out from 

Rosenthal’s canal in the modiolus, placed on the collagen gel in a culture dish and cultured 
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using methods similar to those for P3 rat organ cultures as previously described (Ding et al., 

2013a, Fu et al., 2013).

Histology

Tissues were fixed with 10% formalin for 2 h and rinsed three times in 0.01 M phosphate 

buffered saline (PBS, Sigma P-3813). To label neurofilaments in SGN and nerve fibers, 

tissues were initially incubated for 2 h in 0.01 M PBS containing 3% Triton X100 and 10% 

goat serum (Vector S1000) followed by incubation for 24 h at 4 °C with a mouse 

monoclonal neurofilament 200 kDa antibody (Sigma N0142, 1:200) in 0.01 M PBS 

containing 0.2% Triton X100 and 10% goat serum (Vector S1000). Afterwards, the samples 

were rinsed 3 times with 0.1 M PBS and then incubated for 4 h at room temperature with 

Alexa Fluor 568 conjugated goat anti-mouse secondary antibody (Invitrogen A-21124, 

1:100) in 0.01 M PBS containing 0.2%Triton X100 and 10% goat serum (Vector S1000). To 

label the stereocilia, the tissues were incubated with Alexa Fluor 488 conjugated phalloidin 

(Sigma P1951, 1:100) in 0.01 M PBS (1:100) for 1 h. Afterwards, the samples were rinsed 

three times in 0.1 M PBS and then incubated with TO-PRO-3 (Invitrogen T-3605, 1:300) in 

0.01 M PBS for 1 h.

To detect the presence of the superoxide radical in P3 rat pups, cultures were incubated in 

100 µM dihydroethidium (DHE) (Sigma D-7008) for 30 min after treatment with vehicle 

only or 1 mM KM (3, 6, 12 or 24 h). Afterwards, half the samples were fixed and labeled 

with an antibody against neurofilament 200 kDa and TO-PRO-3 as described previously 

(Deng et al., 2013). To identify cells undergoing caspase-mediated cell death, P3 

organotypic cultures were incubated for 1 h with CaspaTag3 (Intergen, 1:30), a cell 

permeable probe that fluoresces in the presence of activated caspase-3 (Deng et al., 2013).

To differentiate between type I and type II neurons in P3 cochlear organotypic cultures, 

tissues were fixed in 10% formalin containing 3% Triton X100. As described previously 

(Deng et al., 2013), these cultures were then incubated for 48 h at 4 °C with a mouse 

monoclonal antibody against neurofilament 200 kDa, which is expressed in type I and type 

II SGN and a rabbit polyclonal antibody against peripherin, an intermediate filament 

selectively expressed in type II SGN (Barclay et al., 2011, Lang et al., 2005)(Millipore 

AB1530; 1:200). Afterwards, the cultures were rinsed in 0.1 M PBS and incubated overnight 

at 4 °C with Alexa Fluor 488 labeled goat anti-mouse secondary antibody (Invitrogen 

A-21151, 1:100) and Alexa Fluor 568 labeled goat anti-rabbit secondary antibody 

(Invitrogen A-11008, 1:100) in 0.01 M PBS containing 0.2% Triton X100 and 10% goat 

serum (Vector S1000).

Analysis

Tissues were subsequently rinsed and mounted on glass slides in glycerin to assess cellular 

integrity using a confocal microscope (Zeiss LSM-510 meta, step size 1 µm per slice) with 

appropriate filters to detect the green fluorescence of Alexa Fluor 488 (excitation 488 nm, 

emission 525 nm), red fluorescence of Alexa Fluor 568 (excitation 561 nm, emission 595 

nm), and blue fluorescence of TO-PRO-3 (excitation 633 nm, emission 672 nm). The 

resulting confocal images collected in the same region of different specimens for both 
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experimental and control samples. In some cases, multi-layered images were merged using 

ZEN Digital Imaging software (Zeiss, 2012 version). For quantitative analysis, either 

neuronal nuclei or caspase-3 positive/negative cells were counted in every 10th layers of a 

multi-layered image stack.

The experimental procedures were approved by the Institutional Animal Care and Use 

Committee (IACUC) of the University at Buffalo, NY, USA, and conform to the guidelines 

from the National Institutes of Health, MD, USA.

Results

KM damage in P3 cultures

KM was applied to P3 organotypic cultures for 24 h and the condition of the OHC and IHC 

was evaluated using Alexa-488 phalloidin to label the actin which is heavily expressed in the 

stereocilia and cuticular plate of hair cells. The status of the SGN and peripheral auditory 

nerve fibers (ANF) which radiate toward the hair cells was evaluated by neurofilament 200 

kDa immunolabeling. Representative photomicrographs from the upper basal turn of 

cochlear cultures maintained for 24 h without KM (0 mM) or with 0.5 and 1 mM KM are 

presented in Figure 1. In untreated control cultures, the OHC and IHC were arranged in 

orderly rows (Figure 1A). Thick fascicles of ANF projected out radially from the large, 

round SGN. As the ANF approach the IHC they form a dense network. Treatment with 0.5 

mM KM for 24 h resulted in a noticeable reduction in the thickness and number ANF 

fascicles projecting toward the IHC and a complete loss of the dense network for fiber 

terminals normally present adjacent to the IHC (Figure 1B). There was also slight reduction 

in the density of SGN and shrinkage in the size of SGN somata. In spite of neural 

pathologies, there was little evidence of hair cell loss. Increasing the KM dose to 1 mM led 

to a further reduction in the number and thickness of ANF fascicles projecting towards the 

hair cells and a complete loss of dense network of fiber terminals normally seen adjacent to 

the IHC (Figure 1C). The density of SGN was noticeably reduced, many SGN somata were 

shrunken and nearly all the IHC and OHC were missing. These results indicate that in P3 

organotypic cultures, ANF and SGN are more vulnerable to KM toxicity than OHC and 

IHC.

Kanamycin-Induced Hair Cell Damage in Adult and P3 Cultures

While KM damaged hair cells in both P3 and adult organ cultures, damaged occurred at 

lower concentrations in adults. The photomicrographs in Figure 2 show representative 

photomicrographs from the basal turn of adult (Figure 2, rows 1–2) and P3 (row 3) 

organotypic cultures maintained for 24 h with KM concentrations ranging from 0 (control) 

to 1 mM KM. In 0 mM control cultures, the OHC and IHC are aligned in orderly rows in 

both adult (Figure 1A, a) and P3 cultures (Figure 2F). The round hair cell nuclei were 

intensely and uniformly labeled with TO-PRO-3 while the stereocilia and cuticular plate 

were strongly labeled with phalloidin. Treatment with a low-dose (0.1 mM) of KM resulted 

in considerable hair cell loss in adults (B, b), but not in P3 cultures. In adults, many OHC 

were either missing or their nuclei were condensed and irregularly shaped or fragmented, 

morphological features of apoptosis. The profiles of IHC nuclei were irregularly shaped and 
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TO-PRO-3 labeling of the nuclei was heterogeneous. Higher dose of KM (0.2-1 mM) 

resulted in increased and eventual complete loss of IHC and OHC (C, c; D, d; E, e). Hair 

cells in P3 cultures were more resistant to KM damage. Most OHC and IHC were still 

present after treatment with 0.1 and 0.2 mM KM, but TO-PRO-3 labeling of the nuclei 

became increasingly heterogeneous and the profiles of the nuclei shifted from round to a 

more irregular shape (Figure 2G–H). Higher concentrations of KM (0.5–1 mM) destroyed 

nearly all the hair cells (Figure 2I–J).

P3 SGN Vulnerable to KM Damage

Figure 3 shows representative photomicrographs of SGN in the basal turn of adult (upper 

row) and P3 (lower row) cultures treated with various doses of KM (0 to 1 mM). The 

cytoplasm of the large, round soma of adult and P3 SGN was homogenously labeled with 

neurofilament 200 kDa. In control cultures (0 mM KM), intense neurofilament 200 kDa was 

present in the cytoplasm of the somata of adult (Figure 3A) and P3 (Figure 3F) SGN. In 

these cells, TO-PRO-3 also uniformly labeled the large round nuclei in both adult (Figure 

3A) and P3 (Figure 3F) SGN. Treatment of adult SGN with 0.1-1 mM KM had minimal 

effect on neurofilament and TO-PRO-3 labeling (Fig.3 A-E). In contrast, when KM was 

applied to P3 SGN, there was a dose-dependent loss of neurofilament staining, shrinkage of 

somata and nuclei and nuclear fragmentation (Figure 3F–J), morphological features 

characteristic of cells undergoing apoptosis. To quantify the changes, we counted the 

numbers of SGN with apoptotic nuclei (shrunken and fragmented nuclei) and determined the 

percentage of SGN in each group. As KM concentration increased, the mean (+/− SEM) 

percentage of SGN in P3 organotypic cultures increased significantly from ~4% in controls 

(0 mM) to roughly 80% at 0.5 mM; all groups were significantly different from one another 

(One-way ANOVA, F=422.1, p<0.0001, 4, 22 df, Newman-Keuls post-hoc, p<0.05). Few 

apoptotic cells were observed in adult organ cultures even at the highest concentration of 1 

mM.

Superoxide in P3 SGN and Hair Cells

Because aminoglycosides reportedly increase ROS levels in the cochlea in vitro (Hirose et 

al., 1997), we used DHE to detect the expression of the superoxide radical in cultures treated 

for 3, 6, 12 or 24 h with 1 mM KM. Representative photomicrographs illustrating DHE 

labeling in the basal turn of P3 cochlear cultures and P3 SGN are shown in Figure 4. In the 

organ of Corti, DHE labeling was first observed after 12 h and 24 h of KM treatment in 

regions where there was significant hair cell loss (Figure D–E, yellow arrows). DHE 

labeling was largely absent in Controls and cultures treated with KM for 3 h and 6 h (Figure 

A–C); in these conditions, most hair cells were present. In P3 SGN, little of no DHE 

labeling was observed in Control cultures (Figure 4A) and only a few DHE positive cells 

were observed after 3 h of KM treatment (Figure 4G). However, as the duration of KM 

treatment increased from 6 h to 24 h, DHE labeling progressively increased. These results 

indicate that KM-induced superoxide generation is much stronger in SGN than the organ of 

Corti.
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Caspase-3 activated earlier in P3 SGNs than in HCs

To explore the mechanisms and time course of cell death, P3 cochlear and SGN cultures 

were labeled a fluorogenic probe that detects activated caspase-3. Figure 5 presents shows 

confocal micrographs from cultures treated for 3, 6, 12 and 24 h with 1 mM KM. Caspase-3 

was largely absent from the hair cell region of the organ of Corti of Control cultures and 

cultures treated with KM for 3 h and 6 h (Figure 5A–C). However, many caspase-3 positive 

cells were evident in the organ of Corti of cultures treated with KM for 12 h and 24 h 

(Figure 5D–E); caspase-3 labeling was evident in regions with extensive hair cell damage. In 

contrast to the organ of Corti, caspase-3 labeling was already evident in SGN after just 3 h 

of KM treatment (Figure 5G); labeling progressively increased as treatment duration 

increased (Figure 5H–J). Caspase-3 labeling was strongest in the nucleus of SGN with a 

shrunken soma (Figure 5G–H)(Kamada et al., 2005), consistent with cells undergoing 

apoptosis. To quantify the expression of caspase-3, we counted the numbers of caspase-3 

positive hair cells and SGN in cultures treated for 3, 6, 12 and 24 h with 1 mM KM and 

determined the percentages of caspase-3 positive hair cells and SGN at each time point. Few 

caspase-3 positive hair cells were observed at 0, 3 and 6 h post-treatment (Figure 5L), but 

the mean (SEM) percentages of caspase-3 positive hair cells increased to 85–90% at 12 h 

and 24 h post-treatment. There was a significant effect of treatment duration on caspase-3 

expression in hair cells (One-way ANOVA, F=753.8, p<0.0001, 4, 15 df). There were 

significant differences between 0 h vs 12 and 24 h, 3 h vs. 12 and 24 h, 6 h vs 12 and 24 h 

and 12 h vs 24 h (Newman-Keuls post-hoc, p<0.05). Few caspase-3 positive SGN were 

observed at 0 h, but the percentage progressively increased from 3 h to 24 h reaching a 

maximum of around 93% at 24 h (Figure 5L).. There was a significant effect of treatment 

duration on caspae-3 expression (One-way ANOVA, F=754.9, p<0.0001, 4, 15 df). There 

were significant differences between: 0 h vs 3, 6, 12 and 24 h, 3 h vs. 6, 12 and 24 h, 6 h vs 

12 and 24 h and 12 h vs 24 h (Newman-Keuls post-hoc, p<0.05).

Type II SGNs resistant KM treatment

Adult type II SGN and auditory nerve fibers are typically more resistant to ototraumatic 

insult than type I neurons (Spoendlin, 1982, Spoendlin and Schrott, 1989). To determine if 

postnatal type II SGN were more resistant than type I neurons to KM treatment, cochlear 

cultures containing SGN were stained with peripherin which is only present in type II 

neurons as well as neurofilament 200 kDa which is expressed in both type I and type II 

neurons (Barclay et al., 2011, Froud et al., 2015). Figure 6 shows representative 

photomicrographs of cochlear cultures double-labeled with neurofilament 200 kDa and 

peripherin and treated with 1 mM KM for 24 h or 48 h. In Control cultures, neurofilament 

labeling of SGN and their processes was more extensive and robust than that for peripherin, 

consistent with the fact that the former labels both type I and type II neurons whereas the 

later labels only type II neurons (Figure 6A, C, G). Robust peripherin labeling was expressed 

in a smaller subpopulation of type II SGN somas; the peripherin labeled fibers projected 

radially and then formed three longitudinal fiber bundles near the location of the OHC 

(Figure 6B). In the merged image (Figure 6G), red peripherin labeling was exclusively seen 

in the three parallel longitudinal fiber bundles corresponding to the location of the three 

rows of OHC. The yellow labeling representing the overlap of neurofilament and peripherin 

only projected radially and stopped in the region occupied by IHC. After 48 h KM 
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treatment, there was a dramatic decline in the extent and intensity of neurofilament staining 

(Figure A–C), consistent with overall loss of SGN noted above. In contrast, there was only a 

modest loss of peripherin labeling of fibers and somata of type II SGN. There was little 

evidence of soma shrinkage in the peripherin-labeled type II SGN after KM treatment 

(Figure 6A vs. F) and the three longitudinal fiber bundles were still present.

Discussion

Many studies report that SGN degeneration begins weeks or months following 

aminoglycoside treatment, long after the hair cells have disappeared (Landry et al., 2011, 

McFadden et al., 2004, Shepherd et al., 2008); however, some find that SGN and afferent 

nerve terminals begin to degenerate soon after the onset of aminoglycoside treatment and 

hair cell loss (Dodson and Mohuiddin, 2000, Kong et al., 2010, Xu et al., 1993). To explore 

this issue, we assessed the time course of hair cell loss and SGN degeneration in vitro by 

treating rat P3 cochlear organotypic cultures and adult cochlear cultures with 0.1 to 1 mM 

KM. In our in vitro assays, KM destroyed both OHC and IHC; however, adult hair cells 

were slightly more vulnerable to KM damage than P3 hair cells. Treatment for 24 h with 0.1 

mM KM caused significant hair cell damage in adult cultures whereas 0.2 to 0.5 mM of KM 

was required to produce comparable hair cell damage in P3 cultures (Figure 2). In contrast, 

P3 SGN and nerve fibers were much more vulnerable to KM than adult SGN. KM doses as 

low as 0.1 mM resulted in significant somata shrinkage and nuclear condensation in P3 SGN 

whereas adult SGN were largely unaffected by KM doses as high as 1 mM (Figure 3). KM 

also caused considerable thinning and loss of P3 auditory nerve fibers projecting to the hair 

cells (Figure 1B–C) and significant loss of the dense network of nerve fibers adjacent to the 

IHC. Damage to P3 SGN was associated with increased expression of the toxic superoxide 

radical and executioner caspase-3; these changes were observed as early as 3 h post-

treatment (Figure 4–Figure 5). A comparison of neurofilament and peripherin labeling of 

auditory nerve fibers and SGN in P3 cochlear cultures revealed much greater loss of 

neurofilament than peripherin staining (Figure 6). These results suggest that peripherin-

positive type II fibers are more resistant to KM damage than type I fibers, consistent with 

other forms of trauma (Spoendlin, 1969, 1971).

Critical Period

In altricial species such as cats, rats and mice, cochlear function and structure develop 

rapidly after birth. During development, the cochlea is especially vulnerable to 

aminoglycoside antibiotics during a critical period which begins around the onset of 

cochlear functions (~8 d in postnatal rat) and subsides once the cochlea matures (~28 d in 

postnatal rat). The greatest hearing loss and hair cell loss occurs when aminoglycosides are 

administered in vivo during this critical period and substantially less if administered before 

or after this critical period (Carlier and Pujol, 1980, Henley et al., 1996, Shepherd and 

Martin, 1995). The critical period for aminoglycoside ototoxicity is thought to be related to 

mechanisms associated with cochlear development. One factor that could conceivably 

contribute to the critical period observed in vivo is maturation of the hair cell transduction 

channels in the stereocilia (Hashino and Salvi, 1997, Hashino et al., 1999). Stereocilia 

damage and manipulations that limit uptake through the transduction channels, suppress the 
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entry of aminoglycosides into the hair cell (Gale et al., 2001, Richardson et al., 1997). 

According to this view, the hair cell lesions at ages P15 and beyond should be more severe 

than at P3. Our data show that hair cell lesions in adults were more severe than in P3 rats, 

consistent with the hypothesis that aminoglycoside entry through the transduction channel 

may be an important factor in ototoxicity. However, aminoglycoside uptake in vivo is likely 

regulated by other factors such as the blood-labyrinth barrier, tight junctions, channels and 

transporters which regulate the movement of aminoglycosides from the stria vascularis into 

the endolymph (Dai et al., 2006). Aminoglycosides are readily taken up into neonatal hair 

cells prior to the establishment of a mature blood-labyrinth barrier or endolymphatic 

potential, but uptake slows considerably after the blood-labyrinth barrier matures (Dai et al., 

2006). However, disrupting the blood-labyrinth barrier in adult animals promotes entry of 

aminoglycoside into the cochlea; this results in rapid hair cell loss followed by a slow 

progressive degeneration of auditory nerve fiber and spiral ganglion neurons over weeks and 

months (Ding et al., 2003, McFadden et al., 2004).

P3 KM Neurotoxicity

The most unexpected finding of the current study was that KM, but not gentamycin, caused 

considerable damage to ANF and SGN in P3 cultures, but KM failed to damage ANF and 

SGN in adult cultures. One possible explanation for this is that KM induced greater 

expression of superoxide in SGN than hair cells in P3 explants; the strong expression of 

superoxide may be related to the paucity of myelination on P3 neurons. Conversely, adult 

SGN may be more resistant to KM neurotoxicity due to extensive myelination which 

provides neurotrophic support (Agterberg et al., 2008, Leake et al., 2011). Neither of these 

explanations, however, can account for the fact the gentamicin does not damage postnatal 

SGN whereas KM does. Given that P3 SGN are damaged by KM but adult SGN are not, an 

important issue that needs to be addressed in future studies is the age at which SGN become 

resistant to KM damage.

We were initially suspect of our finding that KM damaged P3 SGN and ANF because we 

had previously reported that another aminoglycoside, gentamicin failed to damage P3 ANF 

or SGN with concentrations that caused massive hair cell loss (Ding et al., 2002). To verify 

our earlier gentamicin results, we repeated our earlier study with P3 cochlear cultures treated 

with 0.5 mM gentamicin for 24 h. Consistent with our earlier studies, we confirmed that 

gentamicin caused massive hair cell damage, but failed to damage ANF or SGN (Figure 7). 

To further confirm that our KM studies were correct, we performed further replication 

studies with KM and again found that KM damaged P3 ANF and SGN as well as hair cells 

as noted above.

We carried out an extensive literature search to determine if KM or other aminoglycosides 

damaged ANF or SGN and found one report showing that local drug application to the adult 

guinea pig cochlea resulted in weak to moderate gentamicin immunolabeling in SGN and 

ANF from 6 h to 7 days post-treatment (Imamura and Adams, 2003). However, our in vitro 
results with adult cochlear cultures revealed no damage to ANF or SGN. On the other hand, 

in vivo application of a high concentration of gentamicin into the perilymph of the guinea 

pig cochlea resulted in severe damage not only to hair cells, but also ANF, SGN, the organ 
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of Corti and lateral wall of the cochlea (Dodson and Mohuiddin, 2000). In this case, the 

massive damage seen when gentamicin was applied to the cochlea may be the result of 

nonspecific damage caused by the high drug concentration.

There is considerable evidence that aminoglycoside antibiotics rapidly enter hair cells 

through nonselective cation channels located in the stereocilia at the apical pole of the hair 

cell (Corey and Hudspeth, 1979). However, uptake has also been observed in many other cell 

types including the dorsal root ganglion neurons, trigeminal ganglion neurons, tongue 

papillae, vibrissae, and proximal tubule kidney cells (Dai et al., 2006, Imamura and Adams, 

2005, Raisinghani and Premkumar, 2005). In these cases, drug entry is believed to occur 

through TRP channels and P2X receptors (Bongartz et al., 2010, Corey et al., 2004, Garcia-

Anoveros and Duggan, 2007, Raisinghani and Premkumar, 2005, Xu et al., 2011). TRPV1 

channels are expressed in adult rat SGN (Zheng et al., 2003). TRPM4 immunolabeling was 

absent in murine embryonic SGN, but immunolabeling increased from P0 to 2 weeks old 

followed by decreased expression in adult SGN (Sakuraba et al., 2014). P2×2 receptor 

expression was observed in SGN and ANF from embryonic day 19 until early postnatal life 

followed by a decline in expression as the rat cochlea matured (Jarlebark et al., 2000). One 

interpretation of these results is that KM-induced damage to P3 SGN and ANF could be 

mediated through aminoglycoside uptake through TRP or P2×2 channels; however, this 

explanation fails to account for lack of neuronal damage caused by gentamicin which should 

permeate these channels. At this time, we are left with paradoxical and unexplained finding 

that KM is neurotoxic to postnatal SGN and ANF whereas gentamicin is not. Some clues 

regarding its neurotoxic potential may be gleaned from a recent study showing that KM 

caused considerable mitochondrial swelling, vacuole formation and endoplasmic reticulum 

dilation in adult dorsal cochlear nucleus neurons; however, these effects were largely 

reversible (Fan et al., 2013). Further work is needed to more fully elucidate the mechanism 

underlying KM neurotoxicity in P3 SGN and ANF. From a clinical perspective, our results 

suggest that KM could be especially toxic to human SGN which begin to develop and 

mature in utero around the first trimester (Bibas et al., 2006).
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Fig. 1. 
Representative confocal images from the upper basal turn of the cochlea of P3 organotypic 

cultures treated with 0 (control), 0.5 or 1 mM KM for 24 h. Specimens double labeled with 

neurofilament 200 kDa (red) and phalloidin-Alexa-488 (green). (A) In control cultures (0 

mM KM), outer hair cells (OHC, bracket) and inner hair cells (IHC, white arrowhead) were 

arranged in orderly rows. Numerous thick fascicles of auditory nerve fibers (ANF, yellow 

arrow) project radially from the round spiral ganglion neurons (SGN, white arrows) toward 

the hair cells. Nerve fibers terminate as a dense network as they approach the IHC (white 

star). (B) After 24 h treatment with 0.5 mM KM, considerable thinning of auditory nerve 

fiber fascicles (yellow lightning bolt) occurred along with shrinkage of SGN somata (v). 

Note complete loss of the dense fiber network near the IHC (compare to stars in panel A). 

There was little evidence of hair cell loss. (C) After 24 h treatment with 1 mM KM, there 

was significant hair cells loss, considerable thinning and loss of auditory nerve fascicles 

(yellow lightning bolt), complete loss of the dense fiber network near the IHC (compare to 

star in panel A), and shrinkage of SGN somata (v).
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Fig. 2. 
Organotypic cultures from basal turn of adult (top two rows) and P3 (bottom row) rats 

treated for 24 h with different doses of KM. Phalloidin label of stereocilia and cuticular plate 

shown in red and TO-PRO-3 label of nuclei shown in green. Second row shows 

representative photomicrographs of surface of organ of Corti from adult rats; first row shows 

the Z-plane image through a section of the surface preparation. Bottom row shows 

representative surface preparation view from P3 rat organ cultures. (A, a) OHC and IHC in 

adult rats after 24 h in culture without KM (control). OHC and IHC arranged in orderly rows 

separated by tunnel of Corti. Note strong phalloidin labeling of the stereocilia (St) and 

cuticular plate. Large, round nuclei present in OHC and IHC; note homogeneous labeling of 

nuclei with To-Pro-3. (B, b) Treatment with 0.1 mM KM resulted in considerable OHC loss. 

Most OHC nuclei condensed and severely shrunken (yellow arrows). Stereocilia present on 

most IHC, but IHC nuclei slightly shrunken and irregularly labeled with To-Pro-3 (white 

arrowheads). (C, c; D, d; E, e) OHC and IHC losses increased as KM dose increased from 

0.2 to 1 mM; nearly all hair cell missing with 0.5 mM KM. (F) Three rows of OHC and 

single row of IHC in P3 control groups; strong, homogeneous To-Pro-3 labeling evident in 

IHC. (G) OHC and IHC present after 0.1 mM KM treatment, but To-Pro-3 nuclear labeling 

was irregular (white arrowheads). (H) Most OHC and IHC present after 0.2 mM KM 

treatment, but To-Pro-3 labeling was heterogeneous, nuclear profiles were irregular and 

condensed. (I, i; J, j). Nearly all OHC and IHC destroyed by 0.5 and 1 mM KM
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Fig. 3. 
Photomicrographs of SGN from basal turn of adult (top row) and P3 rats treated for 24 h 

with 0 (control) to 1 mM KM. Specimens stained with neurofilament 200 kDa (red) and To-

Pro-3 (green). (A) Adult SGN in 0 mM control group characterized by large round somas 

labeled by neurofilament stain and round, centrally located To-Pro-3-labeled nucleus. (B–E) 

Soma and nuclear morphology of adult SGN treated with 0.1 to 1 mM KM were similar to 0 

mM control. (F) P3 SGN in 0 mM control group characterized by large, round To-Pro-3-

labeled nucleus located in the center of the SGN; cytoplasm of SGN soma heavily labeled 

with neurofilament. (G–J) As KM dose increased, soma size decreased and many SGN had 

condensed and/or fragmented nuclei (white arrowhead). (H) Mean percentage (+/− SEM) of 

apoptotic SGN versus KM dose; Control = 0 mM KM. (# indicates significant differences 

between doses in the P3 group)
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Fig. 4. 
Representative photomicrographs from organ of Corti (A–E) and SGN (F–J) in the basal 

turn of P3 rats treated with 0 (control) or 1 mM KM for 3, 6, 12 or 24 h. Dihydroethidium 

(DHE) used to detect superoxide (red). TO-PRO-3 used to label nuclei (blue) in the organ of 

Corti (A–E) and neurofilament 200 kDa (green) used to label the SGN (F–J)
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Fig. 5. 
P3 cultures of organ of Corti (A–E, surface view; a–e, Z-plane section) from basal turn 

treated with 0 (control) or 1 mM KM for 3, 6, 12 or 24 h. Organ of Corti stained with 

caspase-3 (Cas3, red), TO-PRO-3 (blue) and phalloidin-Alexa-488 (green). Many hair cells 

missing after 12 h and 24 h KM treatment; many caspase-3 labeled cells (yellow arrows) 

present at this time (D–E). P3 SGN cultures (F–J) from the basal turn treated with 0 

(control) or 1 mM KM for 3, 6, 12 or 24 h. Specimens labeled with neurofilament 200 kDa 

(green) and caspase-3 (Cas3, red). Note increase in caspace-3 SGN between 3 and 24 h of 

kanamycin treatment. Histograms showing percentages of casapse-3 positive hair cells (K) 

and caspase-3 positive SGN (L). Horizontal lines indicate significant (p<0.05) between 

group differences (see text for details).
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Fig. 6. 
Basal turn P3 organotypic control cultures (A, D, G) and cultures treated with 1 mM KM for 

24 h (B, E, H) or 48 h (C, F, I). Specimens labeled with neurofilament-200 kDa (green), 

expressed in both type I and type II SGN, and peripherin (red), expressed only in type II 

SGN. Note large loss of neurofilament positive SGN soma and radiating fibers (A, B, C), but 

major retention of peripherin-positive type II SGN and fibers (D, E, F). Panels in left and 

middle column merged (yellow) in right column
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Fig. 7. 
P3 rat cochlear organotypic culture treated with 0.5 mM gentamicin for 24 h. Only a few 

OHC were still present (white arrow) and a few IHC were missing (white arrowhead). 

Auditory nerve fibers (ANF, yellow arrow) and spiral ganglion neurons (SGN, green arrow) 

intact.
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